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GaAs: Eg=1.43¢V, A= 0.867um, v, = 3.46x10%*Hz
Si:  Eg=1.12eV, A= 1.10um, v, =2.73x1014Hz
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The energy and momentum conservation laws require
certain conditions to be satisfied to make this absorption possible.

Electron

Photon

For the direct photon 1nto e-h pair transtformation,
Eph - Eg’

pph = | Pe = Puls
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he mass of the photon 1s negligibly small:

__ p ph ~ 0;
(because p = m*v)

£(k")

Therefore after the absorption the e and the & must have equal
momentums:
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€ Semilogarithmic plot of the absorption
coefficient of InSb at 5 K as a function of
photon energy. The filled circles represent
experimental results.

€ Plot of the square of the absorption
coefficient of PbS as a function of photon
energy showing the linear behavior
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Fig. 9.1. Absorption coeffi-

cient of a semiconductor

with bandgap Eg versus en-

ergy. The “Urbach tail”

Ideal semiconductor absorption dominates absorption near
oo (E— Eg)!2 (direct gap) but below the bandgap. Ab-
o Free-carrier O (E—Eg)?  (indirect gap) sorption t.urther l')eIOW the
*«._ absorption bandgap is dominated by

i free-carrier absorption.

Urbach tail
0= 0ty exXpl(E~Eg)VE{jpach]

Absorption coefficient

o

Energy .

The 1dealized semiconductor has a zero band-to-band absorption coefficient at the bandgap
energy (E = E;). The absorption strength in a real semiconductor, for below-bandgap light, can

be expressed in terms of an exponentially decaying absorption strength. In this absorption tail,

called the Urbach tail, the absorption coefficient versus energy 1s given by

& = Ug exp[(E _Eg)/EUrbach] (9.3)

where o, 1s the experimentally determined absorption coefficient at the bandgap energy and
Etvaen 15 the characteristic energy (here called the Urbach energy). which determines how

rapidly the absorption coetficient decreases for below-bandgap energies.
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Fig. 6.16. Schematic band structure of
Si as an indirect-bandgap semiconduc-

tor showing the phonon-assisted tran-
sitions (labeled 1 and 2) which con-
tribute to the indirect absorption edge.
\I'is) and |45) represent intermediate
states

——» — H.p-mediated
transition

——>— Hep-mediated
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Fig. 6.17. Plots of the square root of the absorption coefficients of Si versus photon en-
ergy at several temperatures. The two segments of a straight line drawn through the ex-

[6.33]
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Fig. 6.21. The energy states of a Wannier exciton
showing both its bound states n =1 to 3 and the
continuum states. E is the bandgap and R, the

exciton binding energy.
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Fig. 6.24. Comparison between
the absorption spectra in the
vicinity of the bandgap of a
direct-gap semiconductor with
(solid lines) and without (broken
curve) exciton effects
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Fig. 6.25. Excitonic absorption spectra of GaAs near its bandgap for several sample tem-
peratures. The gray lines drawn through the 21, 90 and 294 K data points represent fits
with (6.90) [6.54]
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Fig. 6.34. Schematic diagram of a free-carrier absorption process near the Fermi level E.
The thin red straight line labeled “photon” represents the light dispersion. During absorp-
tion a carrier from state 1 below Ef is excited to an empty state 2 above Ef. Scattering
with a phonon or impurity, represented by the horizontal arrow, is needed to conserve
energy and wavevector in this process




AZOE RS 3%

(o]
o
|

47 N,e*

deonem*y,

(o 24
o
|

—
X
'
c
Ig
n
7, 36
£
»n
c
©
.
-

S
(=
|
Optical bandgap(ev)
w w
. (3, ]

T T T
1 2

Al content(wt%)

| ! | ! | ! I !
600 800 1000 1200
wavelength(nm) a~dE It R & =AM IR K




Ciil) 2 R 5 28 i REZK

Donor - Acceptor and Impurity-band Absorption

B Donor
&




Band — donor (a) and acceptor - band (b) absorption
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» Knowing the and of materials aids
engineers in determining which material to use in their solar cell designs.



e You will find more.
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Fig. 2.1. Tllustration of
electron-hole recombination.
The number of recom-
bination events per unit time
per unit volume is propor-
tional to the product of
E, electron and hole concen-
trations, i. ¢. Renp.
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* Recombination rate is proportional to the product of the concentrations of
electrons and holes

+ R=Bnp
where
B = bimolecular recombination coefficient
n = electron concentration
p = hole concentration
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Thus a luminescence process involves three separate steps:

Excitation: Electron—hole pairs have to be excited by an external source of
energy.
Thermalization: The excited e-h pairs relax towards quasi-thermal-
equilibrium distributions.

e Recombination: The thermalized e-h pairs recombine radiatively to pro-
duce the emission.

(a) Absorption | ~ (b) Emission

s{% ial

final Hll,

VAV, 300

sté’tal




IR RN, K6k

Y3kt (Photoluminescence, PL)

3%yt (Electroluminescence, EL)

B 55 2% % 3% (Chathodoluminescence, CL)
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(van Roosbroeck-Shockley relation )
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3. Free-to-Bound Transitions
4. Donor-to-Acceptor Transitions (DAP)

5. EXxciton transition
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Emission spectrum

S

22
E=Ec+%7k [ (2m])

22
E=Ey—fik"/(2my)

Wave vector k

Fig. 5.1. Parabolic electron and hole dispersion relations showing "vertical" electron-hole
recombination and photon emission.

* Electron and hole momentum must be conserved
* Photon has negligible momentum




Emission spectrum

‘\
Boltzmann ‘s Density of
distribution . ensity o lS/tiltES

o<exp (CEKT) ] < (E-Eg)

: Fig. 5.2. Theoretical

emission spectrum of

an LED. The full

width at half
3 Theoretical maximum (FWHM)

FWHM = 1.8 kT emission spectrum of the emission line is

1.8 £T.

Luminescence intensity [/

Eg +kT/2
Energy E

Ipp(fiw) o (hr — Eg)"? exp[—(hw — E,)/(kgT)]  for ficw = L,
0 otherwise,

Energy of maximum emission intensity

Spectral width
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Fig. 7.3. Photoluminescence spectrum due to band-to-
band transition in GaAs measured (broken line) at
room temperature and a pressure of 29.4 kbar. The
theoretical curve (solid line) 1s a plot of the expres-
sion (7.12), approximately proportional to exp|— (o —
E)(kpT)], with T' = 373 K. (From [7.16])
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e In indirect bandgap semiconductors, such as Si and Ge, e-h pairs can
recombine radiatively only via

e Since the probability of these transitions is smaller than for competing
nonradiative processes,

e Si nanocrystals. It is argued that by physically confining electrons and
holes one can enhance their radiative recombination rate.

o Porous Si has been shown to produce efficient visible
photoluminescence and electroluminescence. The reasons are, however,
still controversial .

eThe indirect bandgap semiconductor GaP is an exception



3. Free-to-Bound Transitions

> At sufficiently low temperatures, carriers are frozen on
impurities (GREE) .
»Band-to-band transitions tend to

where all the shallow impurities are ionized.
»Such transitions, involving a free carrier and a charge
bound to an impurity, are known as
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4. Donor-to-Acceptor Transitions

Py F,=FRACTION OF OCCUPIED DONOR
IONS (NEGLECTING EXCITED STATES)

fiw=Ey-E, + (INTERACTION ENERGY)
=€g—€p— €+ (INTERACTION ENERGY)

_»—ACCEPTOR

Py B FRACTION OF ACCEPTORS
OCCUPIED WITH HOLES
(NEGLECTING EXCITED STATES)

e*/(4re &y R)




5. Exciton Transitions @ Low Temp.

> Bound exciton

Photoluminescence intensity —s

> Free exciton
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Fig. 7.10. Photoluminescence of GaAs at 2 K measured by Sell et al. [7.25]. The inset
1s an enlargement of the spectra within the rectangle labeled X. It contains the part of
the emission spectrum associated with free excitons. The spectrum in the inset labeled
(a) and those labeled (b) and (c) correspond to two different samples. The spectrum (c)
was excited by light intensity ten times higher than that used for spectrum (b). The peak
labeled (DY X) is attributed to recombination of excitons bound to neutral donors




5.1 Free exciton Transitions
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5.2 Bound exciton Transitions
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Sensitive (compared to absorption)
Nondestructive
Simple to perform

Considerable analysis may be required to reach

the physical mechanism
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