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A B S T R A C T

A triethylamine (TEA) sensor working temperature of 280 °C with high sensitivity and selectivity for TEA gas has
been successfully fabricated by building Au@SnO2/ZnO nanosheets. By introducing a seed layer, ZnO na-
nosheets have been directly grown on Al2O3 tubes with a facile hydrothermal method. The Au@SnO2/ZnO
structure is formed by utilizing DC-sputtering and pulsed laser deposition (PLD) methods. Compared with the
pristine ZnO and SnO2/ZnO nanosheets sensors, the Au@SnO2/ZnO nanosheets sensors measured at 280 °C get a
higher response of 48.1 toward 50 ppm of TEA gas. Moreover, the Au@SnO2/ZnO nanosheets sensor exhibits
excellent selectivity. The enhanced sensing properties of the Au@SnO2/ZnO nanosheets sensor are discussed
with a model of semiconductor depletion layer on the basis of n–n heterojunction and Schottky contact.

1. Introduction

Triethylamine (TEA), as a significant raw material in industrial and
manufacturing areas, is also an effective indicator for assessment of
freshness of fish and marine life as it was released from dead fishes and
seafoods [1]. However, TEA exerts serious negative influences on
human body and environment due to its highly toxic. TEA's threshold
limit of concentration in the air is 10 ppm on a volumetric basis (ppmV)
[2]. As a result, realizing the rapid, online, trace detection of TEA is of
great importance. Thus, it is of great urgency to develop a fast, on-line
TEA sensor with high sensitivity and selectivity [3].

Up to now, the metal oxide semiconductor used to detect TEA gas
includes ZnO [4] SnO2 [5,6], α-MoO3 [7], V2O5 [8], WO3 [9] nanos-
tructures. ZnO is an n-type metal oxide semiconductor with wide band
gap energy of 3.37 eV at room temperature and a great exciton binding
energy of 60 meV [10-12]. It is one of the widely researched materials
with plentiful applications due to its important potential applications,
and it shows high electron mobility, good chemical stability [13-15],
such as gas sensors [16], nanolasers [17], light emitting diodes [18],
etc. Previous reports have suggested that ZnO, especially for the na-
nostructure ZnO, reveals fine response characteristics to numerous
gases such as H2S [10], butanol [19], acetaldehyde [20] and NH3 [21].

As we all know, one-dimensional (1D) ZnO nanostructures have
some advantages such as high surface to volume ratio, excellent che-
mical and thermal stabilities, however, the materials’ resistance was
increased when they formed arrays. By contrast, two-dimensional (2D)

nanostructures such as ZnO nanoplates [16] and nanosheets [22] can
overcome the above disadvantages. Rui et al. [23] synthesized the ZnO
nanosheets to detect H2O2 via electrodeposition. Because of its hex-
agonal polar structure, the 2D ZnO nanostructure relative to 1D na-
nostructure is more difficult to grow. Lately, Zeng et al. [22] synthe-
sized ZnO nanosheets thin films with a porous nanostructure by a facile
method and reported their CO response, which get the response of 11.2
to 100 ppm gas at 300 °C. In general, ZnO gas sensor can achieve a
relative response to target gases only at high temperatures of
300–400 °C. However, these will no doubt lead to high power con-
sumption even may result in ignition of flammable and explosive gases.
Therefore, it is meaningful to improve the response and reduce the
optimum operating temperature of a gas sensor.

To solve these problems, a number of ZnO-based nanocomposites
have been investigated, Fu et al. [24] manufactured two-dimensional
net-like SnO2/ZnO heteronanostructures to detect H2S, and the en-
hanced response which compared with the pure SnO2 and net-like ZnO
nanostructures was also demonstrated. Jin et al. [25] fabricated Ga2O3-
core/ZnO shell nanorod sensors to detect NO2, when the concentration
of NO2 is 100 ppm, the response value of Ga2O3-core/ZnO shell na-
norod sensors is 692 times larger than that of bare-Ga2O3 nanorod
sensors. Lin et al. [26] prepared the TiO2/ZnO double-layer film sensor,
compared with TiO2 or ZnO film single-layer film, which showed en-
hanced response toward the NO gas. The noble metals were used to
modify the surface of materials which is the other method to the gas-
sensing. According to previous research, it is a valid method to improve
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the gas-sensing properties incorporating the noble with semiconductor
oxides by surface modification. Due to the high catalytic activity of
noble, the gas-sensing performance can be improved significantly [27-
30].

Inspired by the above works, we design and fabricate Au@SnO2/
ZnO composite nanosheets on Al2O3 tubes to improve the sensing
performance of TEA gas on a large scale. The ZnO nanosheets were
grown directly on Al2O3 tubes using a facile hydrothermal method.
SnO2 as a generally well-known n-type oxide semiconductor with a
direct band gap of 3.6 eV [31, 32], is selected to fabricate SnO2/ZnO
n–n heterojunction by PLD (pulsed laser deposition) using SnO2 target.
In addition, the Au@SnO2 Schottky contacts to be formed by introdu-
cing noble metal particles onto the surfaces of SnO2 nanoparticles.
Compared with pure ZnO and SnO2/ZnO nanosheets, the selectivity and
sensitivity of sensors were enhanced markedly after the Au@SnO2/ZnO
nanosheets were to be formed. The mechanism of the enhanced sensing
properties of Au@SnO2/ZnO nanosheets is discussed in detail in the
following sections.

2. Experimental section

2.1. Direct growth of ZnO nanosheets on Al2O3 ceramic tubes

In the experiment, all of the chemical reagents we used in this

experiment were purchased from Sinopharm Chemical Reagent
(Shanghai, China) and used without further purification. A facile hy-
drothermal method is used to synthesize ZnO nanosheets [33]. In a
typical experiment process as shown below: 0.02mol Zn(Ac)2•2H2O
was dispersed into 25ml 2-methoxyethanol. After stirring for 5 h,
1.2 ml ethanolamine was added dropwise into the above solution. We
got a clear solution after stirring for 1 h. After 12 h, cleaned Al2O3 tubes
as shown in Fig. 1(a) (4.0 mm in length, 1.0mm in internal diameter
and 1.4 mm in external diameter) with a pair of Au electrodes (2.0 mm
in distance) attached with four Pt wires were immersed into the as-
obtained solutions for 8 h and then annealed at 350 °C for 30min to
form ZnO seeds layer. Mixed aqueous solution made from zinc nitrate
and hexamethylenetetramine was transferred into Teflon-lined stainless
steel autoclaves. Meanwhile, the Al2O3 tubes were suspended into the
aqueous solution. Then we got ZnO nanosheets after the reaction at
95 °C for 8 h. Finally, the samples were washed by DI water and ethanol
for several times and dried in air.

2.2. Growth of SnO2/ZnO nanosheets and loading of Au nanoparticles

In this section, the pulsed laser deposition (PLD) was employed to
deposit SnO2 nanoparticles on the surface of ZnO nanosheets. A KrF
laser of 1 mJ/cm2 and an oxygen partial pressure of 3× 10−4 Pa were
typically applied. The SnO2/ZnO nanosheet heterojunctions were
grown on Al2O3 tubes by controlling the laser pulses of 1000 pulses.
The experiment process of preparing SnO2 target as shown below: the
mixed powder including 9.0 g SnO2 powder and 0.1 ml DI water was
poured into a mold and spread out, then maintained about 3min under
pressure of 5 MP. After that, the product was dried at 60 °C for 6 h. The
sintering process was performed in box-type resistance furnace with
heating rates of 5 °C/min (0–1250 °C), finally the SnO2 target with
about 25mm in diameter and 4mm in thick was obtained. After above
mention, Au nanoparticles were loaded onto the surface of SnO2 of
SnO2/ZnO nanosheets by DC-sputtering with a working time of 8 s.

2.3. Material characterizations and sensor properties testing

The morphology, size, composition and crystal structure of obtained
samples were checked by scanning electron microscope (SEM, FEI
QUANTA FEG250) with an energy dispersive X-ray spectroscopy (EDS,
INCA MAX-50), and high-resolution transmission electron microscope
(HRTEM, JEM-2100F, JEOL), X-ray diffraction (XRD, D8-Advance,
Bruker), and X-ray photoelectron spectrum (XPS) by Al KaX-ray source
(1486.6 eV).

A Ni-Cr resistor, as a heater, was put in the inner of alumina ceramic
tube to provide the operating temperature for as-fabricated sensors. The
as-fabricated sensors were aged at 340 °C for at least 36 h before tests.

Fig. 1. (a) The image of Al2O3 tube; (b) The image of sensor
device.

Fig. 2. The XRD spectra of as-synthesized ZnO, SnO2/ZnO, and Au@SnO2/ZnO na-
nosheets directly grown on Al2O3 substrate.
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Therefore, as shown in Fig. 1(b), indirectly-heated sensors have been
produced. The gas-sensing properties of sensors were measured with a
gas sensing test system (WS-30A, Weisheng Electronics China). A mi-
crosyringe was used to inject the gases. The ratio of Ra/Rg was to define
the sensor response, where Ra and Rg are the resistances of the sensors
in air and in target gas, respectively.

3. Results and discussion

3.1. Characterizations of ZnO, SnO2/ZnO and Au@SnO2/ZnO nanosheets

X-ray diffraction analysis was used to study the crystallographic

structure of the obtained samples. XRD spectrum of ZnO, SnO2/ZnO,
and Au@SnO2/ZnO nanosheets was shown in Fig. 2. It can be observed
that part of peaks of as-obtained ZnO nanosheets directly on the Al2O3

tube was in good agreement with the JCPDS card 36-1451 and the
diffraction peaks of Al2O3 substrate are also obvious. The diffraction
peaks of Au and SnO2 of Au@SnO2/ZnO nanosheets could not be ob-
served owing to their small amount.

The typical SEM image of ZnO nanosheets on the Al2O3 tubes is
shown in Fig. 3(a), the ZnO nanosheets on the Al2O3 tubes stood uni-
formly and each other was connected to form a network. In order to
prove the existence of Zn and O in the above sample, EDS was used to
observe the element of the obtained sample. From the EDS spectrum

Fig. 3. (a,b) SEM images of ZnO nanosheets directly
grown on Al2O3 substrate and corresponding EDS
spectrum; (c,d) SEM image of SnO2/ZnO nanosheets
and corresponding EDS spectrum; (e,f) SEM image of
Au@SnO2/ZnO nanorod after the implantation of
SnO2 shell and Au nanoparticles and corresponding
EDS spectrum.
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(Fig. 3b) of ZnO nanosheets, we can know that there are two elements
in the ZnO nanosheets sample: Zn, O. Due to the conducting resin and
Al2O3 tubes, there are C and Al elements in this spectrum. In the
meantime, there is no the peak of other impurities in the spectrum,
indicating that the ZnO nanosheets growing on the Al2O3 tubes are
pure. Fig. 3(c) and (d) are SEM and EDS images of SnO2/ZnO na-
nosheets. The peak of Sn can be seen clearly in the spectrum. And ac-
cording to the EDS spectrum as shown in Fig. 3(d), the amount of SnO2

in the SnO2/ZnO material is about 1.9 mol%. Fig. 3(e) and (f) are SEM
and EDS images of Au@SnO2/ZnO nanosheets. In the Fig. 3(e), the
morphology of ZnO nanosheet is preserved after the SnO2 and Au

nanoparticles were deposited on the surface, and the peak of Au can be
seen clearly in Fig. 3(f). And according to the EDS spectrum, the
amount of Au and SnO2 in Au@SnO2/ZnO material is about 21.19 mol
% and 3.64 mol%, respectively.

The HRTEM analysis is used to further investigate the lattice fringes
of the ZnO and Au@SnO2/ZnO nanosheets. The Fig. 4(a) shows the
HRTEM image of ZnO nanosheets, the spacing of lattice fringes is about
0.2814 nm, corresponding to the (100) plane of ZnO. Fig. 4(b) shows
the HRTEM image of the nanocomposite, the interplanar spacing shown
in the image is about 0.3351 nm and 0.2355 nm, corresponding to (110)
plane of SnO2 and (111) plane of Au, respectively. As a result, this

Fig. 4. (a) HRTEM image of ZnO na-
nosheets; (b) HRTEM image of Au@SnO2/
ZnO nanosheets.

Fig. 5. XPS spectra of the Au@SnO2/ZnO
nanosheets: (a) XPS full survey spectrum;
(b) Zn 2p spectrum; (c) Sn 3d spectrum; (d)
Au 4f spectrum.
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further confirms that the Au@SnO2/ZnO nanosheets can be synthesized
triumphantly by the present method.

To further check the composition and structure of the surface of the
obtained Au@SnO2/ZnO nanosheets, XPS was performed for Zn, Sn, Au
nucleus. Fig. 5(a) shows XPS full survey spectrum, which can be ob-
served obviously the peaks of Zn, Sn, Au, C, and O elements. It might be
the reason for the presence of N and C that nitrogen compounds and
hydrocarbons have been generated in the synthesis processes of ZnO
nanosheets. The decomposition of the Zn 2p peaks displays two com-
ponents (Fig. 5b), the values of Zn 2p3/2= 1022.18 eV and Zn 2p1/
2= 1045.14 eV. As shown in Fig. 5(c), the peaks of Sn element are si-
tuated at 487.38 and 495.68 eV, which are ascribed to the Sn 3d5/2 and
Sn 3d3/2. The peaks of Au are shown in the Fig. 5(d) with the binding
energy values of Au 4f7/2= 84.33 eV and Au 4f5/2= 87.98 eV.

3.2. Sensing properties of the ZnO-based nanosheets

For gas-sensing performances of obtained sensors, firstly, the
properties of the sensors were measured at various operating tem-
perature, Fig. 6(a) shows the response of ZnO-based nanosheets sensors
to 50 ppm TEA at a working temperature from 160 to 360 °C. The op-
timal operating temperature of Au@SnO2/ZnO and SnO2/ZnO sensors
is around 280 °C, when the temperature is up to 280 °C, the Au@SnO2/

ZnO and SnO2/ZnO sensors exhibit the maximum response of 48.1 and
22.4, respectively. The ZnO nanosheets sensor exhibits the maximum
response about 20.7 at around 300 °C. Furthermore, as the working
temperature rises, the response decreases, the competing desorption of
the chemisorbed oxygen on the surface of the materials might be a
reason. Fig. 6(b) shows the ability to select the sensors based on the
ZnO nanosheets which are tested with various gases at 280 °C. It can be
found that Au@SnO2/ZnO nanosheets sensors display best selectivity to
TEA than ZnO and SnO2/ZnO sensors. The SnO2/ZnO n–n heterojunc-
tion model in terms of depletion layer and modulation of potential
barrier height and Au@SnO2 Schottky contact might be a reason for
selectivity. On the other hand, the different reactivity of target gases
according to bond energy may be a possible reason. The primary bond
energies of target gases, for example, TEA (CeN), 2-propanol (CeC),
ethanol (OeH), and acetone (C=O), are 307, 345, 458.8, and
798.9 kJ/mol, respectively [34].

As shown in Fig. 7(a), at the optimal working temperature, the re-
sponse curve of obtained sensors of various TEA concentrations from 2
to 1000 ppm was discussed. As a result, Au@SnO2/ZnO nanosheets
sensor exhibits the highest response around the range of 2–1000 ppm
TEA, the sensor measured at 280 °C gets a response of 48.1 toward
50 ppm TEA gas, which is about 2.56 times higher than that of the ZnO
nanosheet sensor (18.89 for 100 ppm TEA gas). Fig. 7(b) shows the
linear relationship of (S−1)−(C) plot to TEA, S= a[C]b+ 1 can re-
present the relationship of response of ZnO-based sensor and

Fig. 6. (a)The relationship between the response and working temperature of sensor
50 ppm TEA gas; (b) Selectivity comparison of three sensors for different target gases at
280 °C.

Fig. 7. (a) Response and recovery curves of three kinds of sensors to TEA gas of different
concentrations at 280 °C; (b) Linear relationship of log(S−1) versus (C) plot to TEA gas at
various concentrations.
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concentration of TEA gas. For S= a[C]b+ 1, a and b are the constants,
S is the response of ZnO-based sensor, C is the concentration of TEA gas.
From the image we can see that pure ZnO, SnO2/ZnO, and Au@SnO2/
ZnO nanosheets sensors exhibit good linear relationship between the
response and concentration in a logarithm scale. The slopes of pure
ZnO, SnO2/ZnO, and Au@SnO2/ZnO nanosheets sensors are 0.5304,
0.5477 and 0.7419, respectively. It manifests that with the increase of
concentration of TEA gas, the response of Au@SnO2/ZnO nanosheets
sensor increases faster than that of pure ZnO, SnO2/ZnO nanosheets
sensors. While three kinds of sensors were measured to 50 ppm of TEA
at 280 °C, all sensors exhibit a reproducible run after five cycles as
shown in Fig. 8(a) and (b), which proves good device repeatability.

To evaluate the performance of sensors, the response-recovery time
is a significant criterion. Fig. 9(a–c) reveals the response and recovery
curves of three typical sensors to 50 ppm of TEA at 280 °C. In the
Fig. 9(a), the response time of the Au@SnO2/ZnO sensor is about 27 s.

3.3. Mechanism of the enhanced sensing properties of Au@SnO2/ZnO
nanosheets

The model of space-charge or depletion layer was introduced to
demonstrate the basic sensing mechanism of pure ZnO sensors [35-37].
The basic principle of work of oxide semiconductor sensors such as
primordial ZnO nanosheets sensors relied on the change of resistance of
sensing materials caused by the adsorption and desorption of the target

gas molecules on the surface of the materials. In fact, when the p–n, n–n
heterojunctions or metal/semiconductor contacts are formed on the
surface of materials, the sensing properties will be enhanced, which has
been already reported [25,37–40].

However, the sensing mechanism is still not clear. To our knowl-
edge, the work functions of ZnO, SnO2, and Au are 5.2, 4.9, and 5.1 eV,
respectively [41-43] (Fig. 10a). The n–n junction will be formed after
the SnO2 nanoparticles are applied to the surface of ZnO nanosheet by
PLD. Therefore, the electrons of SnO2 will flow to ZnO until their Fermi
energy balances. Because of this, the surface of SnO2 forms a depletion
layer. Beyond that, the energy band was bent and it resulted in a higher
resistance state of sensors compared to the pristine ZnO nanosheets
(Fig. 10b). Besides, the electrons will flow from SnO2 to Au nano-
particles when Au nanoparticles are supported on the surface of SnO2/
ZnO nanosheets. This results in the formation of Au@SnO2 Schottky
contact and broadens the depletion layer on the SnO2. Thus, it con-
tinuously increases the materials’ resistance of the SnO2/ZnO na-
nosheets sensor. Fig. 10(c) shows the energy band graph of Au@SnO2/
ZnO heterojunctions.

Thus, while the Au@SnO2/ZnO nanosheets were fabricated, because
the n–n heterojunction and Schottky contact were formed, the number
of electrons of SnO2 is greatly decreased except the oxygen molecules
adsorbed. TEA gas molecules will interact with the preadsorbed oxygen
ions when Au@SnO2/ZnO nanosheets sensors are exposed to the TEA,
the electrons further back to Au@SnO2/ZnO nanosheets. The reaction

Fig. 8. (a) Repeatability test of the sensors
to 50 ppm of TEA at 280 °C; (b) Long-term of
the obtained sensors to 50 ppm TEA.

Fig. 9. Response and recovery time of three sensors: (a) Au@SnO2/ZnO
nanosheet sensor; (b) SnO2/ZnO nanosheet sensor; (c) ZnO nanosheet
sensor.
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between TEA gas and oxygen species on the surface of the Au@SnO2/
ZnO nanosheets can be simply depicted as follows:

(C2H5)3 N+Oδ− ↔ CO2+H2O+NO2+ e−

The height of the barrier due to the Au@SnO2 Schottky and the
width of the depletion layer due to NeN heterojunction were drama-
tically reduced, leading to a significant decrease in materials resistance,
shown in Fig. 10(d). Therefore, according to the sensor response which
was defined S= Ra/Rg, the enhanced response to TEA is primarily due
to the change of resistance caused by the formation of the SnO2/ZnO
heterojunction and Au@SnO2 Schottky barrier.

Moreover, it may be another reason that the sensitized functions of
noble metal particles can further enhance the gas sensing properties of
Au@SnO2/ZnO nanosheets. On the other hand, as an active ingredient,
the noble metals can improve the gas-sensing of the sensors. Au na-
noparticles are likely to catalyze and accelerate the dispering speed of
oxygen molecules on the surface of the SnO2, which may also be a
reason that leads to the enhanced sensing properties of the Au@SnO2/
ZnO nanosheet. A comparison between the sensing performances of
Au@SnO2/ZnO nanosheet sensors and the TEA gas sensors of literature
reported is summarized in Table 1 [44–48].

4. Conclusions

In summary, ZnO nanosheets grew directly on the Al2O3 tubes by a
facile hydrothermal method. The TEA sensor with high selectivity and
sensitivity is formed by designing Au@SnO2/ZnO nanosheets, and their
enhanced sensing mechanism is also discussed in detail. The Au@SnO2/
ZnO nanostructure was formed by using DC sputtering and PLD
methods; highly controllable and reproducible are its advantages. The
Au@SnO2/ZnO nanosheets sensors exhibit fast response (∼27 s) and
high response (48.1) to 50 ppm of TEA gas at the optimum operating
temperature of 280 °C, which is much higher than that of pristine ZnO
nanosheet sensors and SnO2/ZnO nanosheets sensors. Compared with
pristine ZnO sensors, the resistance of Au@SnO2/ZnO sensors was in-
creased due to the formation of a depletion layer after the Au@SnO2

Schottky contact and n–n heterojunction. It is a primary reason for the
enhanced gas-sensing properties. Therefore, this study supplies an ap-
propriate way for the enhancement of gas sensing properties of metal
oxide semiconductor materials.
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